Development and Application of Two-Photon Excitation Stimulated Emission Depletion Microscopy for Superresolution Fluorescence Imaging in Thick Tissue
نویسندگان
چکیده
Two-photon laser scanning microscopy (2PLSM) allows fluorescence imaging in thick biological samples where absorption and scattering typically degrade resolution and signal collection of 1-photon imaging approaches. The spatial resolution of conventional 2PLSM is limited by diffraction, and the near-infrared wavelengths used for excitation in 2PLSM preclude the accurate imaging of many small subcellular features of neurons. Stimulated emission depletion (STED) microscopy is a superresolution imaging modality which overcomes the resolution limit imposed by diffraction and allows fluorescence imaging of nanoscale features. In this thesis, I describe the development of 2PLSM combined with STED microscopy for superresolution fluorescence imaging of neurons embedded in thick tissue. Furthermore, I describe the application of this method to studying the biophysics connecting synaptic structure and function in dendritic spines.
منابع مشابه
Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy.
Two-photon laser scanning microscopy (2PLSM) allows fluorescence imaging in thick biological samples where absorption and scattering typically degrade resolution and signal collection of one-photon imaging approaches. The spatial resolution of conventional 2PLSM is limited by diffraction, and the near-infrared wavelengths used for excitation in 2PLSM preclude the accurate imaging of many small ...
متن کاملSingle-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging.
We developed a new class of two-photon excitation-stimulated emission depletion (2PE-STED) optical microscope. In this work, we show the opportunity to perform superresolved fluorescence imaging, exciting and stimulating the emission of a fluorophore by means of a single wavelength. We show that a widely used red-emitting fluorophore, ATTO647N, can be two-photon excited at a wavelength allowing...
متن کاملFar-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy.
Far-red fluorescent proteins are required for deep-tissue and whole-animal imaging and multicolor labeling in the red wavelength range, as well as probes excitable with standard red lasers in flow cytometry and fluorescence microscopy. Rapidly evolving superresolution microscopy based on the stimulated emission depletion approach also demands genetically encoded monomeric probes to tag intracel...
متن کاملSupraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two-Photon Laser Scanning Microscopy
Two-photon laser scanning microscopy (2PLSM) has allowed unprecedented fluorescence imaging of neuronal structure and function within neural tissue. However, the resolution of this approach is poor compared to that of conventional confocal microscopy. Here, we demonstrate supraresolution 2PLSM within brain slices. Imaging beyond the diffraction limit is accomplished by using near-infrared (NIR)...
متن کاملStimulated Emission Depletion (STED) Microscopy: from Theory to Practice
In recent years, various methods have been proposed to increase the resolution of fluorescence microscopy beyond the diffraction limit of light. Amongst them, Stimulated Emission Depletion (STED) microscopy, which relies on a purely physical concept of fluorescence depletion could, in theory, achieve unlimited resolution independent of the wavelength of light. In this chapter, we review the fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013